skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dominici, Francesca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jointly using data from multiple similar sources for the training of prediction models is increasingly becoming an important task in many fields of science. In this paper, we propose a framework for {\it generalist and specialist} predictions that leverages multiple datasets, with potential heterogenity in the relationships between predictors and outcomes. Our framework uses ensembling with stacking, and includes three major components: 1) training of the ensemble members using one or more datasets, 2) a no-data-reuse technique for stacking weights estimation and 3) task-specific utility functions. We prove that under certain regularity conditions, our framework produces a stacked prediction function with oracle property. We also provide analytically the conditions under which the proposed no-data-reuse technique will increase the prediction accuracy of the stacked prediction function compared to using the full data. We perform a simulation study to numerically verify and illustrate these results and apply our framework to predicting mortality based on a collection of variables including long-term exposure to common air pollutants. 
    more » « less